

MUTAH UNIVERSITY Faculty of Engineering Department of Chemical Engineering

Engineering Chemistry Course Syllabus

Course Code	Course Name	Credits	Contact Hours	
0404112	Engineering Chemistry	3	48	

INSTRUCTOR/COORDINATOR					
Name	Dr. Taha Alkhamis				
Email	alkhamis@mutah.edu.jo				
Website	https://academic.mutah.edu.jo/Taha_Alkhamis				

TEXTBOOK

Steven S. Zumdahl and Susan A. Zumdahl, <u>Chemistry</u>, 7th edition, Houghton Mifflin Company Boston, New York, 2007

SPECIFIC COURSE INFORMATION

A. Brief Description of the Content of the Course (Catalog Description)

This is the second general chemistry course within the curriculum of the chemical engineering. It covers the basic concepts of chemistry that are required for the specialization of chemical engineering. The objectives of this course are as follows:

- 1. To introduce the basic concepts of chemistry that are required for the chemical engineering courses
- 2. To understand the basic calculations and basic chemistry laws required
- 3. To practice solving chemical engineering problems related to chemistry concepts

B. Pre-requisites (P) or Co-requisites (C)

0303101

C. Course Type (Required or Elective)

Required (Compulsory department course)

SPECIFIC GOALS

A. Specific Outcomes of Instruction

The student must know and understand:

- 1. The basic concepts of chemistry required for his specialization. [SLO 1]
- 2. The basic principles and laws of gases (Boyle, Charles, Avogadro, ideal gas law, and Dalton law for partial pressure), stoichiometry, and real gases. [SLO 1]
- 3. The basics in thermochemistry including: Enthalpy, calorimetry, Hess's law, and standard enthalpy of formation. [SLO 1]
- 4. The nature of liquids and solids through: Intermolecular forces, vapor pressure, and phase diagram. [SLO 1]
- 5. The properties of solutions such as solution composition, energies of solution formation, solubility, vapor pressure, boiling point elevation, freezing point depression, osmotic pressure, and colligative properties of solutions. [SLO 1]
- 6. The basics of chemical kinetics and chemical equilibrium and related laws and terminology. [SLO 1]

B. Student Outcomes Addressed by the Course

1	2	3	4	5	6	7			
✓									

BRIEF LIST OF TOPICS TO BE COVERED					
List of Topics	No. of Weeks	Contact Hours			
Gases and related laws	2	6 hours			
Basic principles of liquids and solids	2	6hours			
Properties of solution, vapor pressure, colligative properties Mid-Term Exam	3	9 hours			
Chemical Kinetics	3	9 hours			
Chemical Equilibrium	3	9 hours			
Final Exam	3	9 hours			

METHODS OF ASSESSMENT					
No.	Method of assessment	Week and Date	%		
1	First Mid-term exam	8 th week	30		
2	Homework, Quizzes, Attendance	During the Semester	20		
4	Final Examination	Final Week	50		
	100				

Total

16

48 hours